What Is R Programming? Use Cases and FAQ (2024)

Written by Jessica Schulze • Updated on

Some consider R to be more challenging to learn than other programming languages, but those with a statistical background may find it to be easier. You can learn more about the R programming language and how to learn it in the following article.

What Is R Programming? Use Cases and FAQ (1)

R programming is one of the most requested skills by employers in the data science industry. If you’re considering learning the R language, you’ll be happy to know that it’s available to the public for free under the Free Software Foundation’s GNU General Public License.

Some consider R to be more challenging to learn than other programming languages, but those with a statistical background may find it to be easier. You can learn more about the R programming language, what it’s used for, and how to learn it in the following article.

R programming language overview

R is a free, open-source programming language, meaning anyone can use, modify, and distribute it. It was initially written by Ross Ihaka and Robert Gentleman (also known as R&R) of the University of Auckland’s Statistics Department. However, the statistical programming language we know today as R is a collaborative effort made up of many global contributions and managed by the R Core Team.

R syntax

R syntax is made up of three elements: keywords that have pre-assigned meanings to communicate with the compiler, variables that store information, and comments used to increase code readability.

What Is R Programming? Use Cases and FAQ (2)

R programming language features and environment

R is an implementation of the programming language S. Similarly, it allows users to implement new functionalities by defining new functions. It also has integration capabilities with C and C++. Other notable features of R include:

  • Wide range of libraries

  • Large and active community of users

  • Optimal data storage and handling

  • Suite of data analysis tools and operators

  • Packages to develop neural networks for artificial intelligence (AI)

  • Conditionals, loops, input and output facilities, and user-defined iterative functions

  • Platform-independent and capable of running on all operating systems (Windows, Mac, UNIX, Linux)

What is R programming used for?

Most commonly, the R language is used for data analysis and statistical computing. It’s also an effective tool for machine learning algorithms. R is especially relevant for data science professionals due to its data cleaning, importing, and visualization capabilities. You can use it to create graphics such as charts and use statistical techniques like data reduction, classification, and clustering.

R programming examples

One of the most notable features of R is its versatility. Here are a few examples of industries that use it:

  • Social media companies. Social media platforms collect massive amounts of data every day. Many of the actions you take online are tracked, stored, and used by analysts to target advertising. R is often used by companies to parse, analyze, and visualize these insights.

  • Health care. The R programming language is used in epidemiology to track and predict the spread of disease. It’s also employed in drug discovery to analyze the data collected during pre-clinical trials.

  • Financial technology (FinTech). R is one of the most popular programming languages in the financial services industry. It’s used for credit scoring, risk management, and statistical analyses for investment predictions.

Pros and cons of R programming

AdvantagesDisadvantages
Leading language when it comes to comprehensive statistical analysis packagesMemory-intensive since objects are stored in physical memory
Community-developed code enhancements and bug fixesLacking in security features, cannot be embedded in a web application.
Cross-platform capabilitiesCan be slower than comparable languages like Python

What is the best way to learn R programming?

There are a couple different ways to learn to program in R. You might determine which one is right for you by considering your learning preferences, budget, and time constraints. Those who prefer more hands-on guidance may benefit from enrolling in an online program, whereas learners who enjoy independent study may not require as much instruction. Below, you can browse recommendations for online courses, certificate programs, Guided Projects, and community resources for independent learning.

Online courses

  • Google Data Analytics Professional Certificate. This beginner-level, flexible, online program focuses on data cleaning, analysis, and visualization with R, SQL, and Tableau. In just six months, you can have a shareable certificate for your resume and a foundational knowledge of Rstudio, R programming, and R markdown.

  • IBM Data Analytics with Excel and R Professional Certificate This beginner-level program can be completed in just three months. It’s designed to guide learners through the processes of programming, data analysis, preparation, and predictive modeling using R, Rstudio, and Jupyter. By the end, you’ll earn an employer-recognized certificate from IBM.

  • Data Analysis with R Specialization. This beginner-friendly online course is meant to help learners master data analysis with R. Covered concepts include statistical testing and inference, linear modeling, and utilization of regression models to analyze relationships between variables. It’s flexible, offered by Duke University, and can be completed in four months.

Self-teaching resources

  • The R Journal. This peer-reviewed scientific journal published by the R Foundation is open-access. You can read various topics of interest relevant to both R developers and users.

  • satRdays. These not-for-profit global conferences are held on Saturdays and orchestrated by local communities. They are free or cheap, and focus on R and its applications.

  • R-Ladies. R-Ladies is an organization promoting gender diversity in the R community, from package developers, to conference speakers, to educators.

Keep learning about R programming with Coursera

You can start programming in R today by enrolling in a beginner-focused online course like Data Analysis with R Programming. Led by Google, you’ll explore fundamental concepts like functions, variables, and data types. Upon completion, you’ll be able to perform basic formatting with R Markdown and generate visualizations in R.

Updated on

Written by:

C

Jessica Schulze

Writer

Jessica is a technical writer who specializes in computer science and information technology. Equipp...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

What Is R Programming? Use Cases and FAQ (2024)

FAQs

What is the use case of R programming? ›

Here is a list of industries/disciplines that use the R programming language:
  • Fintech Companies (financial services)
  • Academic Research.
  • Government (FDA, National Weather Service)
  • Retail.
  • Social Media.
  • Data Journalism.
  • Manufacturing.
  • Healthcare.
Jul 23, 2024

What is R programming and why it is used? ›

What is R programming used for? Most commonly, the R language is used for data analysis and statistical computing. It's also an effective tool for machine learning algorithms. R is especially relevant for data science professionals due to its data cleaning, importing, and visualization capabilities.

What is R and what is it used for? ›

R is a free, open source statistical programming language. It is useful for data cleaning, analysis, and visualization. It complements workflows that require the use of other software. You can read more about the language and find documentation on the R Project Website.

What is code R used for? ›

R is a programming language for statistics that can be used for statistical computing and to show data. It's numerous abilities can be put into three main groups: Manipulation of data. Analysis of the numbers.

What are use cases in programming? ›

A use case is a description of the different ways that a user can interact with an application or product. They define the various external entities that exist outside the system, as well as the specific interactions they have with the system. This can come in the form of success scenarios, alternate paths, and more.

What is the basic use of R? ›

R Introduction
  • It is a great resource for data analysis, data visualization, data science and machine learning.
  • It provides many statistical techniques (such as statistical tests, classification, clustering and data reduction)
  • It is easy to draw graphs in R, like pie charts, histograms, box plot, scatter plot, etc++

Who benefits from R programming? ›

The R programming language is used for statistical analysis, data visualization, and data science. It's popular among researchers, data scientists, and statisticians for its powerful tools and packages.

What are the 3 applications of R programming in the real world? ›

R is utilized in research and academics as a statistical research tool. It is used for data evaluation, statistical modeling, and representing data. Researchers analyze and build models with the help of functions, including lme4. R is likewise used for machine learning research and deep learning.

Is R difficult to learn? ›

R is considered one of the more difficult programming languages to learn due to how different its syntax is from other languages like Python and its extensive set of commands. It takes most learners without prior coding experience roughly four to six weeks to learn R.

What are two benefits of using R? ›

6 Reasons R Rocks for Scientific Research
  • Free and open-source. Everyone loves a bargain, and many value open sharing of technology. ...
  • Reproducible research. ...
  • Extremely easy data wrangling. ...
  • Advanced visualizations. ...
  • Quick implementation of new theoretical approaches. ...
  • Easily extends to serve your specific needs.

What is R function used for? ›

A key feature of R is functions. Functions are “self contained” modules of code that accomplish a specific task. Functions usually take in some sort of data structure (value, vector, dataframe etc.), process it, and return a result.

Which software is used for R programming? ›

R is available as Free Software under the terms of the Free Software Foundation's GNU General Public License in source code form. It compiles and runs on a wide variety of UNIX platforms and similar systems (including FreeBSD and Linux), Windows and MacOS.

What is R programming and its uses? ›

R is a popular programming language that allows people to adeptly handle mass amounts of data, generate publication-quality visualizations, and perform a range of statistical and analytic computing tasks. Used in fields including data science, finance, academia, and more, R is powerful, flexible, and extensible.

Is R programming worth learning? ›

These points are super helpful in implementing statistical analysis in your data science workflow. Therefore, the R programming language is a fantastic tool if you are more focused on statistical analysis.

Which is better, R or Python? ›

They're both very powerful languages, so the answer has a lot to do with what you intend to do. If you're primarily looking to create and visualize statistical models, R will be the better choice. If your project goes beyond statistics, Python will offer you far more possibilities.

Why use r instead of Python? ›

On the other hand, R is purely for statistics and data analysis, with graphs that are nicer and more customizable than those in Python. R uses the Grammar of Graphics approach to visualizing data in its #ggPlot2 library and this provides a great deal of intuitive customizability which Python lacks.

What are cases in R code? ›

cases() function in R Programming Language is used to return a logical vector with cases that are complete, i.e., no missing value.

Top Articles
Latest Posts
Article information

Author: Greg O'Connell

Last Updated:

Views: 6163

Rating: 4.1 / 5 (62 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Greg O'Connell

Birthday: 1992-01-10

Address: Suite 517 2436 Jefferey Pass, Shanitaside, UT 27519

Phone: +2614651609714

Job: Education Developer

Hobby: Cooking, Gambling, Pottery, Shooting, Baseball, Singing, Snowboarding

Introduction: My name is Greg O'Connell, I am a delightful, colorful, talented, kind, lively, modern, tender person who loves writing and wants to share my knowledge and understanding with you.